Assignment Website
Reference

  1. K. Simonyan, A. Vedaldi, A. Zisserman , “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014
  2. Szegedy, Christian, et al. “Intriguing properties of neural networks.” arXiv preprint, 2013.
  3. Nguyen, Anh, Jason Yosinski, and Jeff Clune. “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images.” arXiv preprint, 2014.

    Read More

Caffe代码导读(1):Protobuf例子
Protocol Buffer Basics

总的来说,Protobuf主要是在不同平台不同语言之间传递变量的作用. 在Caffe中具体的作用就是

一个软件项目 = 数据结构 + 算法 + 参数,对于数据结构和算法我们都已经有较多研究,但不同开发者对参数管理却各有千秋。有人喜欢TXT格式化的参数文件,有人喜欢BIN简单高效,也有人喜欢图形化界面的直观。不一致的参数管理带来很多问题,例如一个项目组内不同成员必须 约定一套统一的参数方案,或者称为通信协议,这样便于模块集成。而Protobuf工具就完美解决了这个问题,关键部分代码自动生成,节省了>> 大量的开发、调试时间

除了上述简单功能,Protobuf还可以用来传递不同语言(C/C++与Java、Python)之间的参数,省去了自己手动维护数据结构的繁琐工作。也可以支持客户端/服务器模式,在主机/从机之间传递参数。

caffe代码中的参数初始化、参数保存操作

Use CNN for Semantic Segmentation.(Pixel-level inference)

  • First trick: Convert the fully connected layer to convolutional layer. The details can be seen in CS231n. (which change the pretrained net to the structure we want. Increase the efficiency.)

  • Second trick: Get dense predictions from coarse outputs(the coarse outputs are got from the first trick)

    1. Shift and stich (proposed in Overfeat)
    2. Upsampling / backwards strided convolution
  • Use the whole image instead of patch sampling for training?

  • Combining fine layer and coarse layers to make local predictions that respect global structure.(Get more details)

Lecture Note
Lecture Slides It contains extra material
Reference

Read More

Lecture Note
References
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Rich feature hierarchies for accurate object detection and semantic segmentation
Visualizing and Understanding Convolutional Networks
Data Gradient.
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
DeconvNet.
Visualizing and Understanding Convolutional Networks
Guided Backpropagation.
Striving for Simplicity: The All Convolutional Net
Reconstructing original images based on CNN Codes
Understanding Deep Image Representations by Inverting Them
How much spatial information is preserved?
Do ConvNets Learn Correspondence? (tldr: yes)
Plotting performance as a function of image attributes
ImageNet Large Scale Visual Recognition Challenge
Fooling ConvNets

Explaining and Harnessing Adversarial Examples
Comparing ConvNets to Human labelers

What I learned from competing against a ConvNet on ImageNet

Read More