Python Refreshment
Have not using Python for months. It is annoying to check the details every time when start picking up python. Therefore, I decide to write down some remiders (Most are just copied from the following tutorials).
Basic Python
Python implements all of the usual operators for Boolean logic, but uses English words rather than symbols (&&, ||, etc.):
1
2
3
4
5
6
7t = True
f = False
print type(t) # Prints "<type 'bool'>"
print t and f # Logical AND; prints "False"
print t or f # Logical OR; prints "True"
print not t # Logical NOT; prints "False"
print t != f # Logical XOR; prints "True"String
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16hello = 'hello' # String literals can use single quotes
world = "world" # or double quotes; it does not matter.
print hello # Prints "hello"
print len(hello) # String length; prints "5"
hw = hello + ' ' + world # String concatenation
print hw # prints "hello world"
hw12 = '%s %s %d' % (hello, world, 12) # sprintf style string formatting
print hw12 # prints "hello world 12"
s = "hello"
print s.capitalize() # Capitalize a string; prints "Hello"
print s.upper() # Convert a string to uppercase; prints "HELLO"
print s.rjust(7) # Right-justify a string, padding with spaces; prints " hello"
print s.center(7) # Center a string, padding with spaces; prints " hello "
print s.replace('l', '(ell)') # Replace all instances of one substring with another;
# prints "he(ell)(ell)o"
print ' world '.strip() # Strip leading and trailing whitespace; prints "world"List: A list is the Python equivalent of an array, but is resizeable and can contain elements of different types. Index start from 0:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18xs = [3, 1, 2] # Create a list
print xs, xs[2] # Prints "[3, 1, 2] 2"
print xs[-1] # Negative indices count from the end of the list; prints "2"
xs[2] = 'foo' # Lists can contain elements of different types
print xs # Prints "[3, 1, 'foo']"
xs.append('bar') # Add a new element to the end of the list
print xs # Prints
x = xs.pop() # Remove and return the last element of the list
print x, xs # Prints "bar [3, 1, 'foo']"
a = [1,2,3]
a.extend([9,8,7]) # a = [1,2,3,9,8,7]
a = [1,2,3]
a.append([9,8,7]) $ a = [1, 2, 3, [9, 8, 7]]
a.index(8) #index of first occurrence
a.count(8) #number of occurrences
a.reverse() # reverse
a.sort() # sort
a.sort(some_function)For mutable objects(lists,np.array, dictionaries, user-fined objects,sets), “=” is just the reference
1
2
3
4
5a = [1,2,3]
b = a
a.append(4)
print a #[1, 2, 3, 4]
print b #[1, 2, 3, 4]Indexing / Sclicing: We will see slicing again in the context of numpy arrays.
1
2
3
4
5
6
7
8
9nums = range(5) # range is a built-in function that creates a list of integers
print nums # Prints "[0, 1, 2, 3, 4]"
print nums[2:4] # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print nums[2:] # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print nums[:2] # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print nums[:] # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"
print nums[:-1] # Slice indices can be negative; prints ["0, 1, 2, 3]"
nums[2:4] = [8, 9] # Assign a new sublist to a slice
print nums # Prints "[0, 1, 8, 8, 4]"Loops: You can loop over the elements of a list like this(Remember the colon):
1
2
3
4animals = ['cat', 'dog', 'monkey']
for animal in animals:
print animal
# Prints "cat", "dog", "monkey", each on its own line.If you want access to the index of each element within the body of a loop, use the built-in enumerate function:
1
2
3
4animals = ['cat', 'dog', 'monkey']
for idx, animal in enumerate(animals):
print '#%d: %s' % (idx + 1, animal)
# Prints "#1: cat", "#2: dog", "#3: monkey", each on its own lineList comprehensions: When programming, frequently we want to transform one type of data into another.
1
2
3nums = [1,2,3]
new_nums = nums * 2 #new_nums = [1,2,3,1,2,3]
t_nums = [x * 2 for x in nums] # t_nums = [2,4,6]List comprehensions can also contain conditions:
1
2
3nums = [0, 1, 2, 3, 4]
even_squares = [x ** 2 for x in nums if x % 2 == 0]
print even_squares # Prints "[0, 4, 16]"Tuples: A tuple is an (immutable)(不能改变value) ordered list of values. A tuple is in many ways similar to a list; one of the most important differences is that tuples can be used as keys in dictionaries and as elements of sets, while lists cannot. Here is a trivial example:
1
2
3
4
5d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keys
t = (5, 6) # Create a tuple
print type(t) # Prints "<type 'tuple'>"
print d[t] # Prints "5"
print d[(1, 2)] # Prints "1"Dictionaries: A dictionary stores (key, value) pairs, similar to a Map in Java or an object in Javascript. You can use it like this
1
2
3
4
5
6
7
8
9
10d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some data
print d['cat'] # Get an entry from a dictionary; prints "cute"
print 'cat' in d # Check if a dictionary has a given key; prints "True"
d['fish'] = 'wet' # Set an entry in a dictionary
print d['fish'] # Prints "wet"
# print d['monkey'] # KeyError: 'monkey' not a key of d
print d.get('monkey', 'N/A') # Get an element with a default; prints "N/A"
print d.get('fish', 'N/A') # Get an element with a default; prints "wet"
del d['fish'] # Remove an element from a dictionary
print d.get('fish', 'N/A') # "fish" is no longer a key; prints "N/A"It is easy to iterate over the keys in a dictionary:
1
2
3
4
5d = {'person': 2, 'cat': 4, 'spider': 8}
for animal in d:
legs = d[animal]
print 'A %s has %d legs' % (animal, legs)
# Prints "A person has 2 legs", "A spider has 8 legs", "A cat has 4 legs"If you want access to keys and their corresponding values, use the iteritems method:
1
2
3
4d = {'person': 2, 'cat': 4, 'spider': 8}
for animal, legs in d.iteritems():
print 'A %s has %d legs' % (animal, legs)
# Prints "A person has 2 legs", "A spider has 8 legs", "A cat has 4 legs"Dictionary comprehensions:
1
2
3nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print even_num_to_square # Prints "{0: 0, 2: 4, 4: 16}"
Sets: A set is an unordered collection of distinct elements. As a simple example, consider the following:
1
2
3
4
5
6
7
8
9
10animals = {'cat', 'dog'}
print 'cat' in animals # Check if an element is in a set; prints "True"
print 'fish' in animals # prints "False"
animals.add('fish') # Add an element to a set
print 'fish' in animals # Prints "True"
print len(animals) # Number of elements in a set; prints "3"
animals.add('cat') # Adding an element that is already in the set does nothing
print len(animals) # Prints "3"
animals.remove('cat') # Remove an element from a set
print len(animals) # Prints "2"- Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are unordered, you cannot make assumptions about the order in which you visit the elements of the set:
1
2
3
4animals = {'cat', 'dog', 'fish'}
for idx, animal in enumerate(animals):
print '#%d: %s' % (idx + 1, animal)
# Prints "#1: fish", "#2: dog", "#3: cat"
- Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are unordered, you cannot make assumptions about the order in which you visit the elements of the set:
Functions: Using def keyword, no return value type and input type:
1
2
3
4
5
6
7
8def hello(name, loud=False):
if loud:
print 'HELLO, %s' % name.upper()
else:
print 'Hello, %s!' % name
hello('Bob') # Prints "Hello, Bob"
hello('Fred', loud=True) # Prints "HELLO, FRED!"Classes(usually need to to write the constructor functioninit)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16class Greeter:
# Constructor
def __init__(self, name):
self.name = name # Create an instance variable
# Instance method
def greet(self, loud=False):
if loud:
print 'HELLO, %s!' % self.name.upper()
else:
print 'Hello, %s' % self.name
g = Greeter('Fred') # Construct an instance of the Greeter class
g.greet() # Call an instance method; prints "Hello, Fred"
g.greet(loud=True) # Call an instance method; prints "HELLO, FRED!"
Numpy
Arrays
1
2
3
4
5
6
7
8
9
10
11
12
13import numpy as np
a = np.array([1, 2, 3]) # Create a rank 1 array
print type(a) # Prints "<type 'numpy.ndarray'>"
print a.shape # Prints "(3,)"
print a[0], a[1], a[2] # Prints "1 2 3"
a[0] = 5 # Change an element of the array
print a # Prints "[5, 2, 3]"
b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print b.shape # Prints "(2, 3)"
print b[0, 0], b[0, 1], b[1, 0] # Prints "1 2 4"
print b[0] #[1 2 3] which is different from MatlabNumpy also provides many functions to create arrays:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20import numpy as np
a = np.zeros((2,2)) # Create an array of all zeros
print a # Prints "[[ 0. 0.]
# [ 0. 0.]]"
b = np.ones((1,2)) # Create an array of all ones
print b # Prints "[[ 1. 1.]]"
c = np.full((2,2), 7) # Create a constant array
print c # Prints "[[ 7. 7.]
# [ 7. 7.]]"
d = np.eye(2) # Create a 2x2 identity matrix
print d # Prints "[[ 1. 0.]
# [ 0. 1.]]"
e = np.random.random((2,2)) # Create an array filled with random values
print e # Might print "[[ 0.91940167 0.08143941]
# [ 0.68744134 0.87236687]]"indexing
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19import numpy as np
# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
# [6 7]]
b = a[:2, 1:3] #This is just reference, if you want to copy, use np.copy(a[:2, 1:3])
# A slice of an array is a view into the same data, so modifying it
# will modify the original array.
print a[0, 1] # Prints "2"
b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]
print a[0, 1] # Prints "77"Integer Indexing(very important for vectorization,different from MATLAB):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18import numpy as np
a = np.array([[1,2], [3, 4], [5, 6]])
# An example of integer array indexing.
# The returned array will have shape (3,) and
print a[[0, 1, 2], [0, 1, 0]] # Prints "[1 4 5]"
# The above example of integer array indexing is equivalent to this:
print np.array([a[0, 0], a[1, 1], a[2, 0]]) # Prints "[1 4 5]"
# When using integer array indexing, you can reuse the same
# element from the source array:
print a[[0, 0], [1, 1]] # Prints "[2 2]"
# Equivalent to the previous integer array indexing example
print np.array([a[0, 1], a[0, 1]]) # Prints "[2 2]"When you index into numpy arrays using slicing, the resulting array view will always be a subarray of the original array. In contrast, integer array indexing allows you to construct arbitrary arrays using the data from another array. Here is an example:
- Boolean array indexing lets you pick out arbitrary elements of an array. Frequently this type of indexing is used to select the elements of an array that satisfy some condition.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20import numpy as np
a = np.array([[1,2], [3, 4], [5, 6]])
bool_idx = (a > 2) # Find the elements of a that are bigger than 2;
# this returns a numpy array of Booleans of the same
# shape as a, where each slot of bool_idx tells
# whether that element of a is > 2.
print bool_idx # Prints "[[False False]
# [ True True]
# [ True True]]"
# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print a[bool_idx] # Prints "[3 4 5 6]"
# We can do all of the above in a single concise statement:
print a[a > 2] # Prints "[3 4 5 6]"
Datatypes:
1
2
3
4
5
6
7import numpy as np
x = np.array([1, 2]) # Let numpy choose the datatype
print x.dtype # Prints "int64"
x = np.array([1.0, 2.0]) # Let numpy choose the datatype
print x.dtype # Prints "float64"
x = np.array([1, 2], dtype=np.int64) # Force a particular datatype
print x.dtype # Prints "int64Array math (remember the difference between ‘*’ and np.dot())
1
2
3
4
5
6
7
8
9
10
11
12import numpy as np
x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)
x+y # same as np.add(x,y)
x-y # same as np.substract(x,y)
x * y # same as np.multiply(x,y), Elementwise product
x.dot(y) # same as np.dot(x,y), matrix multiplication
x/y # same as np.divide(x,y),Sum
1
2
3
4
5import numpy as np
x = np.array([[1,2],[3,4]])
print np.sum(x) # Compute sum of all elements; prints "10"
print np.sum(x, axis=0) # Compute sum of each column; prints "[4 6]"
print np.sum(x, axis=1) # Compute sum of each row; prints "[3 7]"- Transpose
1
2
3
4
5
6
7
8
9
10x = np.array([[1,2], [3,4]])
print x # Prints "[[1 2]
# [3 4]]"
print x.T # Prints "[[1 3]
# [2 4]]"
# Note that taking the transpose of a rank 1 array does nothing:
v = np.array([1,2,3])
print v # Prints "[1 2 3]"
print v.T # Prints "[1 2 3]"
- Transpose
Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes when performing arithmetic operations. Frequently we have a smaller array and a larger array, and we want to use the smaller array multiple times to perform some operation on the larger array.
One easiest way, we can do this1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16import numpy as np
# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other
print vv # Prints "[[1 0 1]
# [1 0 1]
# [1 0 1]
# [1 0 1]]"
y = x + vv # Add x and vv elementwise
print y # Prints "[[ 2 2 4
# [ 5 5 7]
# [ 8 8 10]
# [11 11 13]]
But with broadcasting, we can do this:1
2
3
4
5
6
7
8
9
10
11import numpy as np
# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v # Add v to each row of x using broadcasting
print y # Prints "[[ 2 2 4]
# [ 5 5 7]
# [ 8 8 10]
# [11 11 13]]"
Scipy
Image Operation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18from scipy.misc import imread, imsave, imresize
# Read an JPEG image into a numpy array
img = imread('assets/cat.jpg')
print img.dtype, img.shape # Prints "uint8 (400, 248, 3)"
# We can tint the image by scaling each of the color channels
# by a different scalar constant. The image has shape (400, 248, 3);
# we multiply it by the array [1, 0.95, 0.9] of shape (3,);
# numpy broadcasting means that this leaves the red channel unchanged,
# and multiplies the green and blue channels by 0.95 and 0.9
# respectively.
img_tinted = img * [1, 0.95, 0.9]
# Resize the tinted image to be 300 by 300 pixels.
img_tinted = imresize(img_tinted, (300, 300))
# Write the tinted image back to disk
imsave('assets/cat_tinted.jpg', img_tinted)Matlab Files: The functions scipy.io.loadmat and scipy.io.savemat allow you to read and write MATLAB files.
- Distance between points: The function scipy.spatial.distance.pdist computes the distance between all pairs of points in a given set:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17import numpy as np
from scipy.spatial.distance import pdist, squareform
# Create the following array where each row is a point in 2D space:
# [[0 1]
# [1 0]
# [2 0]]
x = np.array([[0, 1], [1, 0], [2, 0]])
print x
# Compute the Euclidean distance between all rows of x.
# d[i, j] is the Euclidean distance between x[i, :] and x[j, :],
# and d is the following array:
# [[ 0. 1.41421356 2.23606798]
# [ 1.41421356 0. 1. ]
# [ 2.23606798 1. 0. ]]
d = squareform(pdist(x, 'euclidean'))
print d
Maplotlib
Plotting
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16import numpy as np
import matplotlib.pyplot as plt
# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)
# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
plt.show()Subplots
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23import numpy as np
import matplotlib.pyplot as plt
# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)
# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)
# Make the first plot
plt.plot(x, y_sin)
plt.title('Sine')
# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')
# Show the figure.
plt.show()